【先進事例】製造業オープン連携フレームワーク(CIOF)によるデジタル革命 ~データ取引実証実験の成果報告~

カテゴリー2

品質データ管理による高付加価値経営

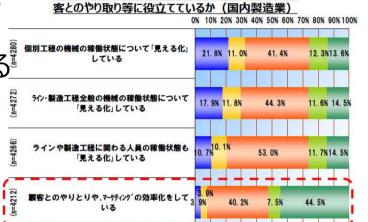
会社名 株式会社ジェイテクト 株式会社DTS

報告者 株式会社ジェイテクト

トテーマ設定

■背景

昨今、日本の製造業ではねつ造等の品質不正により、製品への信頼が揺らいでいる。


一方、日本の現場には品質・技術力を裏打ちする 良質なデータが存在するものの、それらを企業間 で活用している例はわずか。

■データオープン化の課題

「具体的な利用イメージやニーズの明確化」、 「データ提供側の効果・メリットの具体化」、「情報漏えい」等が挙げられる。

収集したデータを顧客とのやり取りやマーケティングに活用している企業や、活用を計画している企業はごくわずか

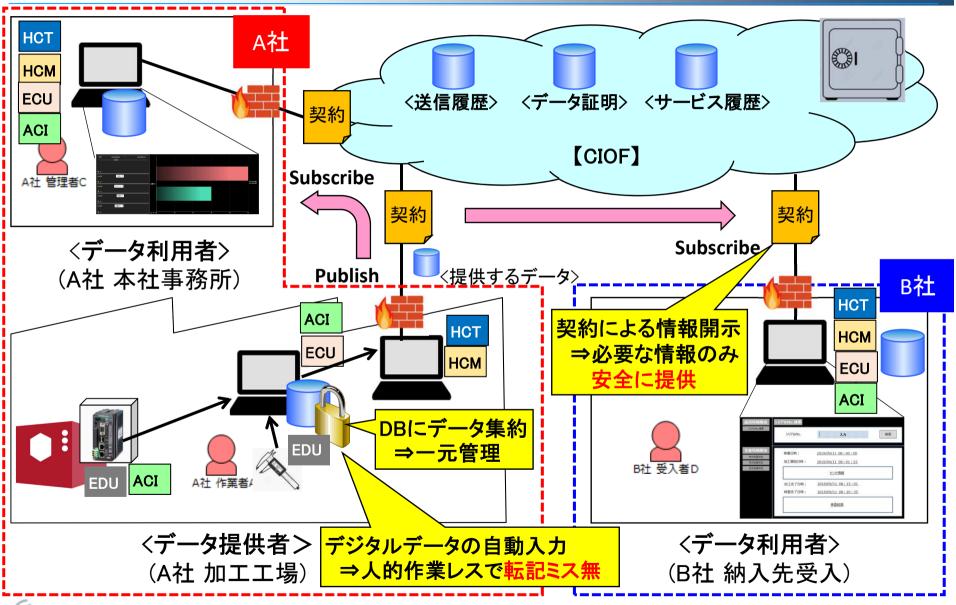
収集したデータを製造工程等のプロセスの改善や顧

※2019年度版ものづくり白書(経済産業省)より https://www.meti.go.jp/press/2019/06/20190611002/2 0190611002_01.pdf

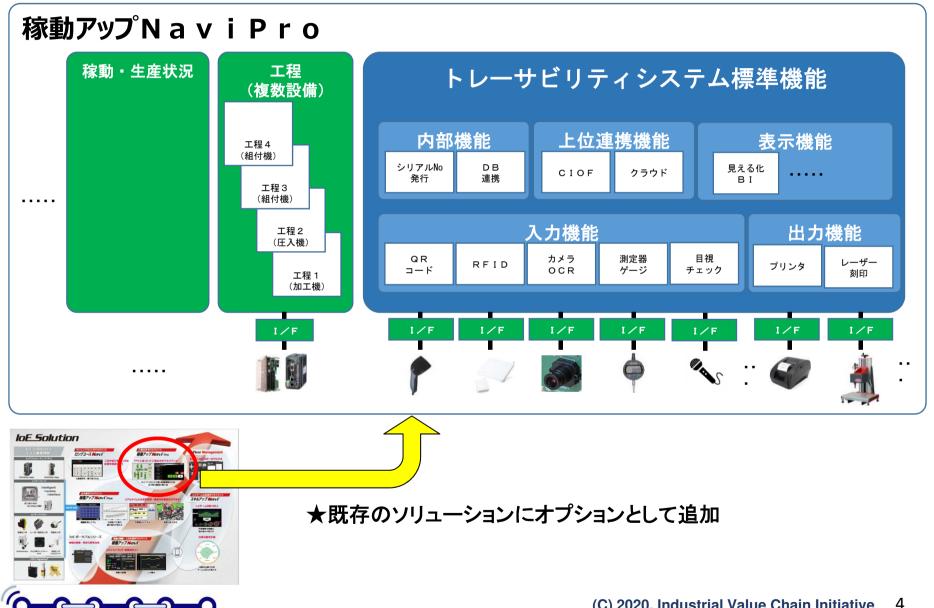
別の手段で足りている

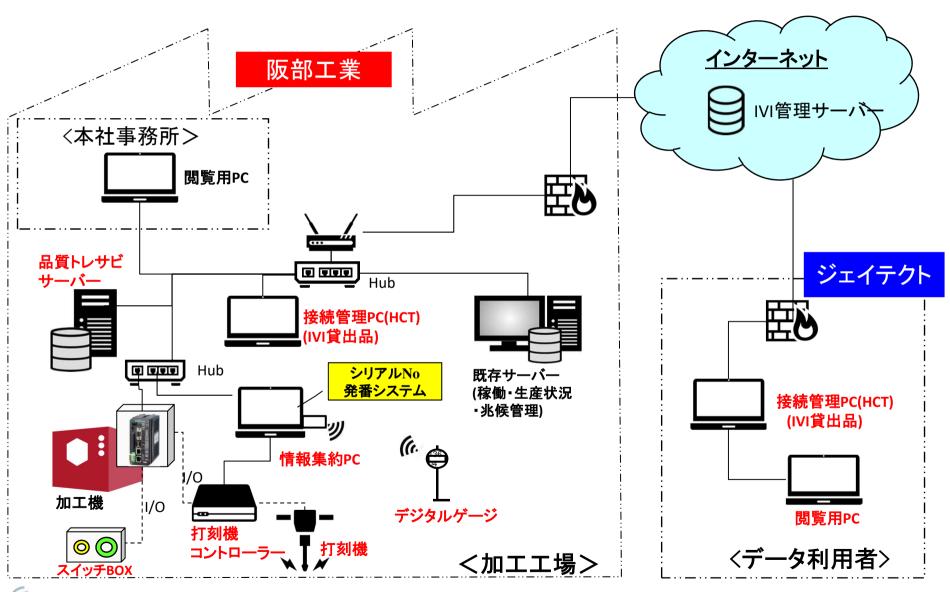
実施している

可能であれば実施したい


■ねらい

- ① 品質保証により、製品や現場データの高付加価値化
- ② 日本のものづくり現場の良質なデータを活かし、顧客の新たなニーズに対応したサービス提供型ビジネスモデル確立


システム構成


アプリケーション構成

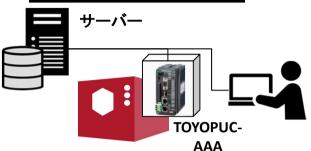
実証実験システム構成図

実証実験の成果

①手書き作業の 削減

②シリアルNo デジタル管理

③検査デ 自動収集


導入前

機内検査結果を 人手で転記

導入後

加工機から自動で データ吸い上げ・表示

印字面

油性スタンプによる 手動印字

打刻機による刻印 (システムの自動発番)

打刻機

アナログゲージ

アナログ測定後 紙に記録

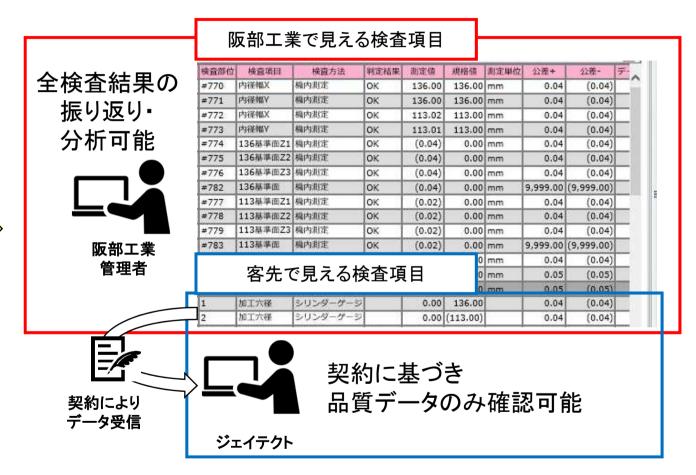
デジタル測定器により データベースに直接記録

デジタルゲージ (ヘッド)

実証実験の成果

導入前

納品先からの 品質問い合わせ

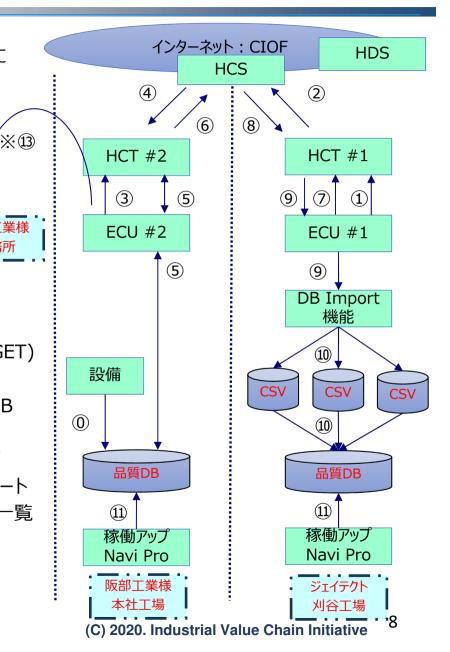

シリアルNo.XXXの 検査情報をください

無数にある過去の検査結果

導入後

実証実験におけるデータフロー

阪部丁業様


<データ提供処理(PULL型)>

- ⑥ 各設備からの品質実績データ(加工・検査実績)を<u>リアルタイム</u>に 品質DBへ格納
- ① ECU #1は15分間隔でHCT #1 ヘデータ送信要求 (REST POST)
- ② HCT #1は送信要求をHCSへ連携 (HTTPS)
- ③ ECU #2は15分間隔で自身へのメッセージを確認 (REST GET)
- ④ HCS はECU #2宛のメッセージをHCT#2へ転送
- ⑤ ECU #2はRequest 内容を確認。品質DBより契約に該当するデータを抽出し、HCT #2へ転送。(REST POST)
- ⑥ HCT #2は受信したメッセージをHCS へ転送(HTTPS)
- ⑦ ECU #1は15分間隔で自身へのメッセージ有無を確認(REST GET)
- ® HCS はECU #1宛のメッセージをHCT#1へ転送。
- 9 ECU #1はRequest メッセージ内のDBレコードをJSON形式でDB Import機能と連携。(MQTT Publish)
- ⑩ DB Import機能は受信したJSONデータよりテーブル単位のCSV ファイル(受信日時をファイル名に付与)を作成し、品質DBヘインポート
- ① 稼働アップNavi Pro のダッシュボード画面より、品質DBの情報を一覧参照する

<データ提供処理(PUSH)型>

※⑫ 阪部工業様内部でのPUSH 型データ連携。今後構築予定

成果と今後の課題

成果:

- ・従来手作業で行っていた品質管理を、自動でデータ収集~データ保管~データ検索システムを構築できた。
- ・汎用化することで、工程変更やトレサビデータの増加減に容易に対応 できるシステムを構築できた。
- 安心して企業間でデータの流通が行えるようになった。

今後の課題:

今回構築したシステムは、データの検索を主な目的としているが、**「品質は工程で造りこむ」**を実現するため、実際の現場では品質傾向の確認や補正等の設備へのフィードバックは**人に頼っている**。

労働人口が減少している現在、これら人のノウハウを形式知化すること

も重要であるが、単独で行うには様々な課題がある。 そこで、より人や企業の成長を促進させるためには、 **多くの企業間でデータが流通**する文化を築きあげる ことが必須である。

