Connected Industries Open Framework for Manufacturing

Basic Specification of System Requirement

Ver.1.0 for public review

January 7th 2019

Industrial Value Chain Initiative
Trade Contract Setup Phase (PULL type) ... 60
System execution and control phase ... 63
Monitoring and Evaluation phase .. 67
Introduction

Purpose of this document

This document specifies the basic requirements for implementing the system for data distribution in the connected industries open framework for manufacturing. This document defines the basic requirements for the development of the system and subsystems that make up the system and constitutes them. As a whole, this document aims to indicate requirements that are available for the system user by making it a system that realizes the connected industries open framework for manufacturing.

The functions and requirements of the connected industries open framework for manufacturing shown in this document are necessary for the parties who conduct data distribution, but further specifications such as security measures are required before full-scale commercialization. Therefore, this document is designed with prototype development for concept demonstration in mind.

The content to be developed in the project supplementary budget for FY2018 for promoting the data sharing is corresponding to the prototype implementation specification separately specified.

Audience

The intended audience of this document is the developer of the subsystem of the connected industries open framework for manufacturing, and the integrator that integrates them and implements the open cooperative framework in individual business scenes.

In addition, companies that provide edge-side platforms, companies providing IT side platforms, standardization bodies that discuss collaboration among these platforms, and those who are technicians, managers, and planners are also target audiences.
References

1. Study on establishment of data related system for realizing Connected Industries, Ministry of Economy, Trade and Industry Information Economics Section (October, 2018) (In Japanese)

4. Same as above: Appendix 1: Use Cases and Common Dictionaries (March 30th, 2018) (In Japanese)

5. Same as above: Appendix 2: Use Case Demonstration (March 30th, 2018) (In Japanese)

6. FY2018 Grant application document of the Industrial data sharing promotion project (June 2018) (In Japanese)

Abbreviation

ADD Actual Data Dictionary
ASD Actual Service Dictionary
DCC Data Component Category
DCM Data Component Model
DCR Data Component Record
DRM Data Relation Model
DPD Data Property Definition
DPV Data Property Value
DTM Dictionary Translation Map
EAU Edge Application Unit
ECC Event and Condition Category
ECE Event and Condition Expression
ECI Event and Condition Instance
ECM Event and Condition Model
ECS Event and Condition State
ECR Event and Condition Record
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU</td>
<td>Edge Control Unit</td>
</tr>
<tr>
<td>EDU</td>
<td>Edge Device Unit</td>
</tr>
<tr>
<td>HCM</td>
<td>Hyper Connection Manager</td>
</tr>
<tr>
<td>HCS</td>
<td>Hyper Connection Server</td>
</tr>
<tr>
<td>HCT</td>
<td>Hyper Connection Terminal</td>
</tr>
<tr>
<td>HDS</td>
<td>Hyper Dictionary Server</td>
</tr>
<tr>
<td>PCC</td>
<td>Process Component Category</td>
</tr>
<tr>
<td>PCM</td>
<td>Process Component Model</td>
</tr>
<tr>
<td>PFD</td>
<td>Process Flow Definition</td>
</tr>
<tr>
<td>PCI</td>
<td>Process Component Instance</td>
</tr>
<tr>
<td>PCE</td>
<td>Process Component Execution</td>
</tr>
<tr>
<td>PTM</td>
<td>Property Translation Map</td>
</tr>
<tr>
<td>SCD</td>
<td>Specific Category Dictionary</td>
</tr>
<tr>
<td>SDD</td>
<td>Specific Data Dictionary</td>
</tr>
<tr>
<td>SSD</td>
<td>Specific Service Dictionary</td>
</tr>
<tr>
<td>TAP</td>
<td>Trade Account Party</td>
</tr>
<tr>
<td>TCP</td>
<td>Trade Contract Profile</td>
</tr>
<tr>
<td>TDP</td>
<td>Trade Data Profile</td>
</tr>
<tr>
<td>TSP</td>
<td>Trade Service Profile</td>
</tr>
</tbody>
</table>
Terminology

ADD : Actual Data Dictionary
A local dictionary that has a list of the DCMs to be used for each site or terminal (HCT) or the controller (ECU) under the terminal.

ASD : Actual Service Dictionary
A local dictionary that has a process model (PCM) and an event model (ECM) to be used for each site or terminal (HCT) or a controller (ECU) under the terminal.

DCC : Data Component Category
A category of Data Component Model (DCM). Categories defined here are registered and used in category dictionary (SCD).

DCM : Data Component Model
A unit of data to be registered in a dictionary. DCM corresponds to the Entity in the E-R model, class in the UML class diagram, and the table, or view in the RDB schema.

DCR : Data Component Record
Specific data content registered along DCM. This corresponds to a data, which we call in general, where data is a record or a collection of records in RDB.

DPD : Data Property Definition
This is the definition of the items constituting the DCM, and the value of the data is set in this unit. It corresponds to a field in RDB.

DPV : Data Property Value
It is a unit for expressing each value constituting a record. It corresponds to one piece of data of key & value type. The value can be either a data type or null.

DTM : Dictionary Translation Map
Relation of elements between Actual Data Dictionary and Specific Data Dictionary. It corresponds to each conversion source and conversion destination of DCM. When the conversion source and the conversion destination are one or more concatenated DCMs,
there is a many-to-many relationship.

EAU : Edge Application Unit
A device that provides applications utilizing data within each site. All on-premise type business applications not executed on the cloud fall under this category.

ECC : Event and Condition Category
It shows the category of event component model (ECM). All ECMs belong to one category of event component (ECC).

ECM : Event and Condition Model
Definition unit of event on the cyber world. It may trigger of a PCM. When defined by the processing of PCM, the ECM may be defined in association with an event in the physical world if it is defined in the state of a specific value of DCM.

ECI : Event and Condition Instance
An event implemented on a specific process or component. It is an instance of an event component model (ECM). ECI can be define a state corresponding to an individual entity in the actual situation.

ECR : Event and Condition Record
Recorded that an event actually occurred in the event component state (ECS). This forms a historical data with timestamp.

ECS : Event and Condition State
A state of event component model (ECM) corresponding to an individual entity in the implemented state. At each point in real time, it has the number of actual records (ECR) of this ECS.

ECE : Event and Condition Expression
Conditions in which an event occurs, constraint conditions, etc. are described by numerical expressions. Normally, a mathematical expression is described using elements such as external values (DPV) obtained from EDU or the like as elements.

ECU : Edge Control Unit
Equipment that manages data to be used and controls data processing within each site according to each purpose. It acquires or provides data from other sites via HCT.

EDU : Edge Device Unit
Devices consisting of sensors that acquire data from the physical world, or equipment attached to the actuator that applies data to the physical world, and that becomes the starting and ending points of data.
HCM: Hyper Connection Manager
Software that provides UI for setting contents of data distribution, usage, dictionary use, conversion method, etc. when ECU and EAU cooperate among different sites.

HCS: Hyper Connection Server
Server that is located on the Internet communicating with the cooperative terminals under its control. It enables cooperation between hetero sites through communication with other servers.

HCT: Hyper Connection Terminal
Communication terminal of the Internet access located in the private network of each site and have local IP address. The external Internet communicates only with the preset HCS.

HDS: Hyper Dictionary Server
Server that manages specific data dictionary, actual data dictionary, and dictionary translation table and responds to registration, modification, search, etc. While managing actual data dictionary for each site, it supports modification of the specific data dictionary.

PCC: Process Component Category
Definition that indicates the category of process model (PCM). All PCMs belong to one of any categories (PCC).

PCM: Process Component Model
Unit of processing in the cyber world. Based on the contents of a specific DCM, calculate according to a predetermined procedure and operate the contents of a specific DCM.

PCI: Process Component Instance
A unit in which a predefined software process (PCM) is implemented on concrete hardware, such as a computer, and becomes executable. Licenses and others are managed in this unit.

PCE: Process Component Execution
A unit executed of a process component model (PCM) on software implementation (PCI). The software execution log is recorded in this unit. License management in this unit as necessary.

PFD: Process Flow Definition
A more specific procedure of the process, defined step by step. Describe the flow of operation in words by statement. Data generation, input, modification, reference, etc. are performed in this unit.

PTM: Property Translation Map
Relationship that indicates the correspondence between data property definitions (DPD) in two DCM in different dictionaries.
SCD: Specific Category Dictionary
A dictionary that contains Data category (DCC), process category (PCC), event category (ECC). Multiple category dictionaries can be defined, but conversion between dictionaries cannot be defined.

SDD: Specific Data Dictionary
Dictionary that defines information of all DCM mutually agreed between multiple sites. It contains one or more DCMs. This is not only one specific dictionary. A plurality of specific data dictionaries may exist.

SSD: Specific Service Dictionary
Dictionary that defines information of process models (PCM) and event models (ECM) that can be referenced from multiple sites. Actual data dictionaries of individual sites can be created based on contents here.

TAP: Trade Account Party
Owner of each site that provides data or uses data when carrying out data distribution. It corresponds to a party to make a transaction contract.

TCP: Trade Contract Profile
Profile to define a form and a method of data distribution and contract contents that are settled between two sites. Data storage method, attribution of rights, billing method, prohibited items, etc. are also included.

TDP: Trade Data Profile
Profile of data component model (DCM) used in messages at the time of sending or receiving messages are described in specific data dictionary or actual data dictionary. The DCM of the requested data also shows its structure, for example in the case where it is represented by concatenation of a plurality of DCMs on the specific data dictionary.

TSP: Trade Service Profile
Profile of definition for the contents of process component model (PCM) and related events (ECM) on the side providing and using data. Also shown are ECUs, EAUs, EDUs, etc. actually to be executed. The DCM defined on TSP can be queried by HCM.
System overview

System features

The connected industries open framework (CIOF) for manufacturing is aimed for a platform for edge areas to further digitize production sites in the manufacturing industry. It is a mechanism that makes it possible to easily distribute data through relatively simple procedures. The following three points are cited as features of CIOF.

Feature 1: Secure and traceable communication

The data on the manufacturing site is highly confidential, has high value as an intellectual property, bringing out such data outside the factory is accompanied by great risk. Especially, in the Internet world, there are many security problems and it is currently the case that management of data is basically inevitable in the factory. CIOF is based on peer-to-peer communications, and in principle do not place data on the Internet. Sending and receiving parties are specified on a contract beforehand, and at the time of transmission, all are encrypted to ensure robustness.

Feature 2: Open and distributed dictionary

Each factory has different words and different way of doing work, it is impossible to integrate and unify these different manufacturing crafts beyond enterprises. As with EDI (electronic data exchange) so far, even if terms and specifications are unified beforehand, it becomes ultimately from scratch. In CIOF, do not unify the dictionary, and operate multiple dictionaries simultaneously in parallel. And, in an open position, by making it easier to search for frequently used ones in those dictionaries, we leave something that is user-friendly, with the law of natural selection.

Feature 3: Self-improvement mechanism

Characteristics of the manufacturing site have autonomous growth through kaizen. In CIOF, in order to solve problems at the bottom of the site, it is possible to expand ex postly as each autonomous decentralized platform on each edge side. A server for collaboration is a mechanism in which a plurality of servers collaborate, and it is possible to cooperate with a
Basic System Configuration

Figure 1 shows the configuration of the system. Each edge side platform has a cooperation terminal (HCT) and a cooperation manager (HCM) inside it and manages cooperation. On the Internet, a cooperation server (HCS) mediates data between HCTs, and a dictionary server (HDS) manages dictionaries necessary for cooperation. It is the control unit (ECU), the device unit (EDU), and the edge application (EAU) which actually provide or use data. Note that only ECU and EAU can communicate directly with HCT.

![Figure 1: System Architecture](image)

Table 1: Level and description of system components

<table>
<thead>
<tr>
<th>Layer</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Internet Layer</td>
<td>Hyper Connection Server (HCS)</td>
<td>HCS connects with HCS of 0 or more. If the destination HCT is not in control of itself, data is communicated between HCS.</td>
</tr>
<tr>
<td></td>
<td>Hyper Dictionary Server (HDS)</td>
<td>The HDS manages the data model (DCM) for each site together with the specific data dictionary, and provides it together with the conversion table.</td>
</tr>
<tr>
<td>Terminal layer</td>
<td>Hyper Connection Terminal (HCT)</td>
<td>The HCT always connects with one HCS. As a window of cooperation, we will bridge the Internet layer and the edge layer.</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Hyper Connection Manager (HCM)</td>
<td>The HCM provides a GUI to the user who provides or uses the data and communicates with the HCT. In addition, necessary dictionaries are connected to the HDS to register and manage.</td>
</tr>
<tr>
<td>Edge layer</td>
<td>Edge Control Unit (ECU)</td>
<td>The ECU connects to one HCT. It has one or more EDUs under management and collectively manages the use and provision of those data.</td>
</tr>
<tr>
<td></td>
<td>Edge Application Unit (EAU)</td>
<td>The EAU connects with one HCT. Although it is equivalent to the ECU in terms of HCT, it does not have an EDU under management and has a process of actually using or providing data.</td>
</tr>
<tr>
<td>Device layer</td>
<td>Edge Device Unit (EDU)</td>
<td>The EDU is connected to one ECU. As a sensor or actuator, contact physical objects in physical world and actually use data or acquire data from there.</td>
</tr>
</tbody>
</table>

In fact, the device unit (EDU) corresponds to a machine tool, a controller, a robot, or the like constituting a production line, the control unit (ECU) cooperates with them and communicates data obtained there with the outside Module, or module that receives data from the outside and controls groups of EDUs corresponds.
Data distribution format and granularity

In CIOF, the edge site platform encrypts and decrypts the contents of transmission in order to securely distribute data to other platforms. In addition, it is only HCS that can handle data contents on the Internet, and secures confidentiality as they are authenticated beforehand.

In HCT, conversion is performed when data items and terms are different between actual data dictionary used at each site and specific data dictionary. On the dictionary server (HDS), a specific data dictionary (SDD) and an actual data dictionary (ADD) are registered in advance and a conversion table (DTM) is registered in advance. The HCT acquires these contents and converts according to the profile of the transaction contents.
The data distribution targeted by CIOF is targeted to areas that do not require comparatively real-time nature between platforms. As shown in Fig. 4, within the edges of the production site, control that requires real time property of 1 second or less is performed, but data distribution with such granularity and accuracy is not subject to CIOF. Also, in the fundamental information system (ERP), data on daily, weekly, and monthly data with larger granularity is often used, but such data is assumed to use conventional means as necessary. There.
Security and Intellectual Property Management

From the viewpoint of intellectual property management on system security and data, the following measures shall be taken.

1) HCT and HCM are installed in the firewall of each site and are not installed directly accessible from the outside. Communication is always made from HCT and HCM side by specifying a specific external server authenticated beforehand and using PUSH type or PULL type starting from the site.

2) Content of data communication (DCR) is encrypted by the transmitting HCT and decrypted by the receiving HCT. The data communication content (DCR) can be relayed only by the previously authenticated HCS. The HCS can temporarily spool the relayed data communication contents (DCR), but it should not be made persistent.

3) Transmission of keys for individual authentication of terminals and servers, and transmission of keys for encryption and decryption at the time of data communication are performed in analog (physical) world including a manual procedure by the person in charge.

4) Profile information for data transactions is shared between the data providing side and the data using side, but it is assumed that the disclosure level can be set according to the situation inside the two sites (e.g., EDU configuration etc.) as required.

5) Requests and data contents actually made between the data provider and the data user are set to be unique all globally so that they can be used in the transaction confirmation phase.

6) The specific dictionary (SDD and SSD) handled by the dictionary server (HDS) is commonly defined and agreed information between the data provider and the data user, and if it permits disclosure to all framework participants is not limited. As described above, for a dictionary and a dictionary conversion map in the common area, it is possible to set up a business operator that can access as necessary.

Scope of development and prerequisites

For system development for the connected industries open framework for manufacturing, the following scope and preconditions shall be established.

1) The system to be developed is hardware or software handling discrete digital data, and it does not cover analog signals, control signals, stream type continuous data, etc.
2) Data that needs to be encoded according to specific standard specifications such as image data, audio data, CAD / CAM data, etc. are handled as files and are not included in the inside. The file is treated as data together with other attribute values given explicitly.

3) Define metadata to define the function and behavior of the system, and the meaning and usage of the target data communicated by the system. Metadata includes dictionary data, dictionary conversion data, profile data, and the like.

4) The authentication server, authentication protocol, and other functions necessary for secure communication are technologies that are essential and widely used widely, and do not include elements of new development. Also, the same applies to cyber security concerns.

5) Historical data on communication transactions is necessary to realize the traceability function of data. The traceability function is one of the important pillars for cooperative systems, but it is outside the scope in this development.

6) The dictionary data and the dictionary conversion data are subjected to maintenance in a bottom-up manner, in a distributed & cooperative manner, and can be added or updated at any time. It is necessary to manage dictionary update and keep consistency in each of two hierarchies, actual dictionary and specific dictionary.

7) There will be more than one dictionary server (HDS) in the future, and they will manage and update the dictionary in cooperation. However, in this fiscal year, there will be only one server and no distributed processing will be done.

8) HCS, HCT, HDS will publish necessary and sufficient source code for function execution to GitHub under MIT license policy, and encourage development as open source.
Method of data transaction

Classification of use cases

The use cases in data transactions can be divided into the following four phases. In fact, data is transmitted from the data provider to the data user in the transaction implementation phase, but in addition to this phase, the contents of such transactions are determined between the two, and the individual edges of both sides. Also, put emphasis on the transaction contract phase that connects according to the actual situation of the unit.

System integration phase

In the system integration phase, installation and registration of HCS and HCT, registration of ECU, EDU, EAU, editing of actual data dictionary (ADD), registration of specific data dictionary (SDD), registration of service (SSD), registration of event persons, registration of ECU and EAU, etc. require authentication. Also, the dictionary is registered and updated by the authenticated user.

Trade contract setup phase

The transaction contract phase refers to the necessary arrangements for individual companies or sites to provide and use data via HCT. Processing of the transaction contract phase is mainly a collaboration manager (HCM) and interacts with the person in charge. Registration and inquiry of specific data dictionary (SDD), actual data dictionary (ADD), registration of dictionary conversion map (DTM), registration of transaction profile, and the like.

System execution and control phase

In the system execution and control phase, data is actually sent and received between terminals (HCT). When distributing data, it is done according to the profile that we made beforehand in the transaction contract phase. There are use cases of PULL type and PUSH type depending on the relationship between the data provider and the data user. Send request, send data record (DCR), inquire dictionary conversion map, perform conversion.

Monitoring and Evaluation phase
In the monitoring and validation phase, after the data has passed from the provider to the user, the fact is recorded, and a record of how the user has used the sent data is accumulated, and if necessary, inquire. It corresponds to confirmation of transaction record, settlement of transaction consideration, inquiry of software implementation (PCE), inquiry of event (ECR).

Classification of transaction contract type

PULL transaction use case

The data user specifies the type, structure and timing of data to be used, and requests the data provider to provide it. We will modify its contents with the data provider and provide data when agreeing to terms. In response to a request from a single data user, data may be provided a plurality of times for each event.

PUSH transaction use case

The data provider specifies the type and structure of data that can be provided and the timing, and the person requesting the data distribution requests the data to be provided. An approved data user receives the data. A plurality of data users may receive the data for one data provider's data provision.
Message structure in execution phase

FIG. 7 shows the structure of a transmission message in the transaction execution phase. The message consists of a message body composed of a list of data records (DCR) and a message header containing a transaction profile.
Basic requirements of connected industries open framework for manufacturing

If the message is for a request, it can not contain a data record, and as shown in FIG. 9, only the character string type request parameter is transmitted as the message body. In the transaction profile in the message header, only the transaction profile ID is specified, and the contents are inquired of each HCT.

Data type

The data type specifies the type in the computer of the value of the entity of data (DCR and DPV). It is defined for each data item. It has character String, Number, Numeric, DateTime, Boolean, Bulk, Reference, URI, and List. Bulk refers to the substance of data files such as images and sounds.
Table 2: data type

<table>
<thead>
<tr>
<th>Data type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>String</td>
<td>A string encoded in UTF 8. Since other data types also become character strings after conversion, versatility is the highest.</td>
</tr>
<tr>
<td>Number</td>
<td>Used when choices, order, etc. can be represented by numbers. Corresponds to ordinal scale, nominal scale, etc.</td>
</tr>
<tr>
<td>Numeric</td>
<td>Represents absolute value, relative value, etc., all other quantities such as integer and floating-point real number. It does not distinguish precision etc. on mounting</td>
</tr>
<tr>
<td>DateTime</td>
<td>Represents the date and time that can be represented on the calendar. Basically it is treated as a point of time, not a period of time.</td>
</tr>
<tr>
<td>Boolean</td>
<td>Boolean value takes a value of either True or False or, in some cases, it is undefined. It is used for condition judgment.</td>
</tr>
<tr>
<td>Bulk</td>
<td>This data type is used when sending the entity of a data file such as image or voice as data</td>
</tr>
<tr>
<td>Reference</td>
<td>It corresponds to an external reference key and is used when defining a connection with another DCM. In fact, it is the data type of the referenced primary key.</td>
</tr>
<tr>
<td>ULI</td>
<td>Specify in plain text the location of relevant data, such as an external URL or an in-house server.</td>
</tr>
<tr>
<td>List</td>
<td>This corresponds to a case where the content is a list of objects that can be represented by the same data type. The data type is selected from the above. You can not set the list in the list.</td>
</tr>
</tbody>
</table>
Object model

Data component model (DCM)

Data provided or used at each site can be shown below using the object model (class diagram of UML).

Data Component Model (DCM)

The data model (DCM) is a unit of data to be registered in the dictionary. Entity in the E-R map, class in the UML class diagram, table, or view in the RDB schema.

Data Component Record (DCR)

Data record (DCR) is concrete data content registered along DCM. It is a record in RDB. In general, what we call data is a collection of records or records in many cases.

The relationship between the data model (DCM) and the data record (DCR) is shown in the following figure. DCM is merely a type information and definition information, and the actual data entity is set to DCR.
Figure 11 models and contents of data component

Data Property Definition (DPD)

The data item (DPD) is an item constituting the data model (DCM), and the value of the data is set in this unit. Corresponds to a field in RDB.

Data Property Value (DPV)

It is a unit of each value constituting a record. It corresponds to one piece of data of key & value type. The value can be either a data type or null.

An example of an entry sheet for describing a data model (DCM) is shown below.
Table 3: Input sheet of Data Component Model (DCM)

<table>
<thead>
<tr>
<th>No</th>
<th>Item name</th>
<th>Description</th>
<th>DataType</th>
<th>Null</th>
<th>Key</th>
<th>Default</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Link name</th>
<th>Link DCM</th>
<th>Join Key</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Process name</th>
<th>PCM</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Information Name</th>
<th>InfoID</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The data ID is a unique symbol for specifying the target DCM. Also, the name of the data is indicated in the data name. Also, in the explanation part, the outline description is described.

2. The dictionary ID is a symbol for identifying a dictionary. For the dictionary classification, either the specific data dictionary or the actual data dictionary is set.

3. The category ID and the category name are categories for classifying the data model. When specifying a pre-registered one, ID is specified, and when there is no applicable category, the ID is indicated as a blank and an arbitrary category name is indicated.

4. Set the date on which the definition sheet was created and the entrant.

5. Specify the items (DPD) constituting the data model (DCM) in units of rows. No shall be the serial number from 1. Item names must not overlap. In the explanation, a brief description of the item is described.

6. Either a character string, a numeric value, a number, a date date and time, a boolean value, an item
reference, a file reference, or a bulk is set as the data type.

7. If mandatory is checked, the content will always be set

8. Primary key means that records (DCR) can be uniquely selected by combinations of checks there.

9. The default value indicates a value that is automatically set when the content is not set.

10. An example of the actual value (DPV) is shown in the sample.

11. When concatenating another DCM to the target data, specify the ID of the DCM of the concatenated data ID. For the concatenated name, set the data name to be concatenated. To define multiple concatenations for the same data, change the name.

12. For the concatenated key, set the item name corresponding to the primary key of the data to be concatenated. The additional items show examples of items used in the target data from the items in the consolidated data.

13. In the additional item, a new item name added by concatenation is listed.

14. Specify the process to handle data. If the classification is generated, it indicates the name and ID of the process that generates the data. In the classification, there are generation, modification, use (corresponding to input and reference).

15. When the data corresponds to predesigned information such as form, slip, screen, panel, board, etc., its name is indicated as information name. The information ID is an ID for identifying the information, but it is not indispensable here.

Relation between data records

- The primary key is one item or an internal primary key item to be automatically generated. Also cover cases with multiple primary keys

- The number of data records of the primary DCM of the conversion source is the same for the DCM of the conversion destination. Actually, a conversion destination data record is generated corresponding to each conversion source data record, and a corresponding primary key is set.

- If the data type of the primary key is different and the value can not be converted, give priority to the data type of the conversion source. Change the data type of the conversion destination. (Interactively specified at conversion table creation)

- If it is a required item but the corresponding item is not in the cooperation source, fill the value according to the default value setting
Process component model (PCM)

The process of providing or utilizing a data model (DCM) (PCM) can be registered in the dictionary as part of the service model. Also, the process implementation (PCI) placed on the actual edge unit is registered as a profile in the HCT that manages each site.

Figure 13 Process Component Model
Process Component Model (PCM)
Unit of processing on cyber. Based on the contents of a specific DCM, calculate according to a predetermined procedure and operate the contents of a specific DCM.

Process Component Category (PCC)
Indicates the category of process model (PCM). All PCMs belong to one category (PCC).

Process Component Instance (PCI)
A unit in which a predefined software process (PCM) is implemented on concrete hardware, such as a computer, and becomes executable. Licenses and others are managed in this unit.

Process Component Execution (PCE)
A unit (PCM) executed on software implementation (PCI). The software execution log is recorded in this unit. License management on this unit as necessary.

Below is an example of an entry sheet for describing a process model (PCM)
Table 4: Input sheet of Process Component model (PCM)

<table>
<thead>
<tr>
<th>No</th>
<th>Data ID</th>
<th>Data name</th>
<th>Crt</th>
<th>Cng</th>
<th>Inpt</th>
<th>Ref</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Procedure</th>
<th>Target data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Precondition</th>
<th>Target data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No</th>
<th>Type</th>
<th>Postcondition</th>
<th>Target data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardware requirements

Other requirements

1. The process ID is a unique symbol for specifying the target PCM. In addition, the process name indicates the name representing the process. Also, in the explanation part, the outline description is described.

2. The dictionary ID is a symbol for identifying a dictionary. The dictionary classification here is assumed to be an actual data dictionary.

3. The category ID and the category name are categories for classifying processes, and when specifying pre-registered ones, IDs are designated, and when there is no corresponding category, the ID is indicated as a blank and indicates an arbitrary category name.

4. Set the date on which the definition sheet was created and the registrant.
5. Describe the ID and name of the relevant data model (DCM) in carrying out the process.

6. It shows the relationship between data and process. In the case of output, check what is generated, either generation (record newly added), setting (setting item value newly), change (item value changed). In the case of input, it specifies input (when starting the process) and reference (when data is introduced from the process).

7. Explain the operation procedure in the process. Branching, repeating, etc. should be avoided as much as possible.

8. Prerequisites for running the process. Trigger is a trigger event (ECM). Specify "trigger" or "premise" for the classification.

9. Indicates what is happening as a process execution result. When the classification is normal, it shows the expected state. In the case of exception, it indicates an error or desirable situation.

10. If there is assumed hardware, or if there is a specific requirement, describe it.

11. It shows other requirements and special notes.

Event component model (ECM)

The event component model (ECM) has internal events obtained as a result of implementing a process component model (PCM), external triggering of PCM, or external event serving as a starting condition. There are state events not directly related to PCM, events physically occurring in the real world, and events periodically occurring corresponding to time. A state event is defined for a conditional expression composed of the value (DPV) of a specific item (DPD) of the data model (DCM), and is caused by a change in those values.

These event models (ECM) are stored as a specific service dictionary (SSD) and are queried by HCT or HCM from each site. Also, if it can not be disclosed to the outside, it is defined as an actual service dictionary (ASD) and stored in the dictionary server.

Event and Condition Model (ECM)

Definition unit of event on cyber. It will trigger PCM. When defined by the PCM process, the ECM may be defined in association with an event in the physical world if it is defined in the state of a specific value of the DCM.

Event and Condition Instance (ECI)

Corresponding event model (ECM), an event state corresponding to an individual entity in the implemented state. At each point in real time, it has the number of states of this ECS.

Event and Condition Record (ECR)

Recorded that an event actually occurred in the event state (ECS).

Event and Condition State (ECS)

Corresponding event model (ECM), an event state corresponding to an individual entity in the implemented state. At each time point in real time, it has state as many as this ECS.
Event and Condition Expression (ECE)

Conditions in which an event occurs, constraint conditions, etc. are described by numerical expressions. Normally, formulas are described using elements such as external values (DPV) obtained from EDU and the like as elements.

![Event component Model (ECM)](image)

Figure 14: Event component Model (ECM)

An example of an entry sheet for describing an event model (ECM) is shown in Table 5 below
1. The event ID is a unique symbol for specifying the target ECM. Also, the event name indicates the name representing the process. Also, in the explanation part, the outline description is described.

2. The dictionary ID is a symbol for identifying a dictionary. The dictionary classification is assumed here as an actual data dictionary.

3. The category ID and the category name are categories for classifying processes, and when specifying pre-registered ones, IDs are designated, and when there is no corresponding category, the ID is indicated as a blank and indicates an arbitrary category name.

4. Set the date on which the definition sheet was created and the registrant

5. In case of an event occurring in connection with the execution of the process, check it and describe the
process ID and process name. For the classification, set the event category defined in the process model (PCM) such as start, end, interruption, abnormality.

6. Define the state by the value of a specific DPD of a specific DCM, and describe the state name and condition etc of each. Events will occur at the timing of that state.

7. Check if it is an event corresponding to an external event or user's operation and describe its contents.

8. Check for regular events. The unit of the repetition number is selected from one of minutes, hours, days, weeks, months, and years.

9. For events that conform to conditions other than the above as regular events.
Trading Profile

Structure of Trading Profile

The profile is information indicating the content and method of the data transaction. The profile is stored in HCT of each site, and it is taken out every time when data transaction is carried out. Both the data providing side and the data using side have profiles related to one data transaction separately and are uniquely associated with the data transaction contract ID. Profiles are created in the data transaction contract phase. The contents of each correspond, but they are different, you can not directly know the contents of the profile of the other party in that form.

Trade Contract Profile (TCP)

A form and a method of data distribution and contract contents are settled between two sites. Including data storage method, attribution of rights, billing method, prohibited items etc

Trade Data Profile (TDP)

Data descriptions (DCM) used in messages at the time of sending or receiving messages are described in specific data dictionary or actual data dictionary. The DCM of the requested data also shows its structure, for example in the case where it is represented by concatenation of a plurality of DCMs on the specific data dictionary.

Trade Service Profile (TSP)

Defines the contents of process (PCM) and related events (ECM) on the side providing and using data. Also shown are ECUs, EAU, EDUs, etc actually to be executed. DCM defined on TSP can be queried by HCM.
In a data transaction, a data provider and a data user have one common transaction contract profile (TCP), a different transaction data profile and a transaction service profile on each side. As shown in FIG. 16, the transaction data profile has a dictionary conversion map (DTM) and an item conversion map (PTM) between two data dictionaries. One of the target data dictionaries is a specific data dictionary (SDD), and the other is the actual data dictionary (ADD) of the site on its own side.
As shown in FIG. 17, the transaction service profile has a process implementation (PCI) in which a process model (PCM) is developed in a specific edge unit and an event implementation (ECI) in which an event model (ECM) is embodied. These are related to actual edge units (ECU, EDU, EAU) existing on each edge side as shown in FIGS. 18 and 19.

Figure 17: Object model of Trade Service Profile
Basic requirements of connected industries open framework for manufacturing

Figure 18: Object model of Process Component Instance

Figure 19: Object model of Event and Condition Instance
Trade Contract Profile

Registration is registered in the cooperation manager (HCM) in the same way as registering dictionaries. These definitions are based on data model (DCM), process model (PCM), and event model (ECM). An example of the definition sheet of the transaction contract profile (TCP) is shown below.

Table 6: Input Sheet of Trade Contract Profile

<table>
<thead>
<tr>
<th>No</th>
<th>Property type</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Set the ID and name of the business operator (himself) who conducts the transaction.
2. Set the ID and transaction name of this transaction.

3. For role sharing, either the provider or the user is set up.

4. Set the date on which the profile was created and the name of the person in charge.

5. And sets the business entity ID and name of the counterparty side as a business partner.

6. Specify the ID of the specific data dictionary and the dictionary name to be used in the transaction.

7. The start trigger is "provider" in the case of data provider side (PUSH), "user" in case of data user side (PULL). It does not matter whether you are a provider or a user. Even if it is PULL in the transaction contract phase, it may become PUSH in the implementation phase. Here we show the form of the implementation phase.

8. The start event indicates an event that determines the timing at which the data provider transmits data. In case of PULL type, it is blank.

9. The transaction start requirement and the transaction end requirement designate the necessary requirements and enter the date of actual start and end.

10. The business partner terminal designates the ID of the partner's HCT, and the execution unit indicates the unit (the data providing process, the hardware on which the utilization process is executed) on which the process is executed. Unit classification is either ECU / EAU / EDU. The business partner server (HCS) can be retrieved from the business partner terminal. Also, if the execution unit is not connected directly from the terminal, it is assumed that the terminal knows the unit to be relayed.

11. The data profile specifies the ID and the name of the corresponding data profile, the providing service designates the ID and the name of the service profile of the data providing side, and the usage service includes the service profile of the side using the data Specify ID and name.

12. If there is a request parameter, check it, specify interpretation of request parameter in case of PULL type transaction at transaction execution phase. In accordance with this content, the contents of the data provided by the data providing unit are corrected.

13. For restrictions on data transactions, restrictions on storage, usage restrictions, restrictions on modifications, disclosure limits are specified here as text.

14. Specify other contract conditions, billing methods, etc. in text form.
Definition of Trade Data Profile

Below is an example of the entry format for entering the transaction data profile (TDP).

Table 7: Input Sheet of Trade Data Profile

<table>
<thead>
<tr>
<th>No</th>
<th>Data ID</th>
<th>Data name</th>
<th>Link key</th>
<th>Join type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td></td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

1. Set the ID and name of the business operator (self) who conducts the transaction.
2. Set the data profile ID and profile name.
3. In the transaction ID, set the ID of the corresponding transaction contract profile.
4. Set the date on which the profile was created and the name of the person in charge.
5. In the actual data dictionary, set the ID and name of the actual data dictionary for which this data is defined. Once the actual data dictionary is determined, the category dictionary is uniquely determined.
6. For the data ID, designate the ID and name of the data that is the subject of the transaction.
7. For the classification, either "use" or "offer" is set. It indicates whether the process is the side that uses data or the side that provides data.
8. Categories are categories of data concerned by ID and name. When there is no item corresponding to the category dictionary, ID is unnecessary.

9. The transaction start requirement and the transaction end requirement designate the necessary requirements and enter the date of actual start and end.

10. Regarding restrictions on data transactions, restrictions on storage, usage restrictions, restrictions on modifications, disclosure limits shall be specified here as text.

11. When the target data is linked with other data (DCM), it is shown here.

12. If the connection destination is blank, the primary data is targeted. If the connection destination further has a connection (secondary connection), specify No. of consolidated data.

13. The concatenation method specifies No of the concatenation method in the dictionary of each data model (DCM).

Table 8: Input Sheet of Profile for Translation map

<table>
<thead>
<tr>
<th>DCM of SDD data name</th>
<th>SDD</th>
<th>Profile ID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linked DCMs

<table>
<thead>
<tr>
<th>No</th>
<th>target DCM</th>
<th>target data name</th>
<th>link key</th>
<th>join type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

property translation map

<table>
<thead>
<tr>
<th>No</th>
<th>link</th>
<th>actual data item</th>
<th>key</th>
<th>specific data item</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. The common data ID indicates DCM on the common data dictionary corresponding to the data (element of the actual data dictionary). It also indicates the ID of the specific data dictionary to which the common data ID belongs.

2. For the profile ID, set the ID of the transaction data profile.

3. If there is a connection in common data, check the existence of consolidated data and specify ID and name of the data (DCM).

4. For the connection destination, specify the ID of the DCM to which the DCM is connected. In the case of blank, primary data is targeted. In the case where the link destination further has a link (secondary link), the No. of the line of consolidated data is specified.

5. In the concatenation method, specify No of the concatenation method in the dictionary of each data model (DCM).

6. The definition of the map (PTM) between data items (DPD) is defined by showing the respective items for
DCM on the specific data dictionary side and DCM on the actual data dictionary side. When the concatenated part is blank, it becomes the primary DCM, and otherwise, the No of the connected data is set.

7. Associate one item of the conversion map with the other item. If there is a connection, specify No of consolidation in common data. If there are special notes on conversion, it is stated in the remarks.
Definition of Trade Service Profile

Below is an example of the entry format when entering the transaction service profile (TSP). The transaction service profile identifies the processes and events handling the target data.

Table 9: Input Sheet of Trade Service Profile

<table>
<thead>
<tr>
<th>No</th>
<th>Firm ID</th>
<th>Firm name</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Profile ID</td>
<td>Customer ID</td>
<td>2</td>
</tr>
<tr>
<td>No</td>
<td>Profile name</td>
<td>Date</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Dic ID</td>
<td>Dictionary</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Data ID</td>
<td>Data name</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Process ID</td>
<td>Process</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Instance ID</td>
<td>Type</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Category ID</td>
<td>Category</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Unit ID</td>
<td>Unit name</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Terminal ID</td>
<td>Terminal</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Pre-cond</td>
<td>Start date</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Post-cond</td>
<td>End date</td>
<td></td>
</tr>
</tbody>
</table>

trace ability of event recording

<table>
<thead>
<tr>
<th>No</th>
<th>event ID</th>
<th>Event name</th>
<th>type</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

conditions of data usage

<table>
<thead>
<tr>
<th>No</th>
<th>Data ID</th>
<th>Data name</th>
<th>type</th>
<th>constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

authorized data users

<table>
<thead>
<tr>
<th>No</th>
<th>Unit ID</th>
<th>Unit name</th>
<th>access level</th>
<th>permission</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Set the ID and name of the business operator (himself) who conducts the transaction.

2. Set ID of service profile and profile name.

3. In the transaction ID, set the ID of the corresponding transaction contract profile.

4. Set the date on which the profile was created and the name of the person in charge.

5. In the actual service dictionary, the ID and the name of the actual service dictionary for which this process is defined are set. If the actual service dictionary is decided, the category dictionary is uniquely determined. Processes and events to be set belong to the same service dictionary.

6. In the data ID, specify the ID and name of the data targeted for the transaction.

7. In the process ID, specify the ID and name of the process.

8. An arrangement ID is set as an ID indicating the state in which the process is installed in the unit.

9. "Provide" or "Use" is set for the classification. In the case of a provision process, events describing the timing of providing data are described (actually, they are OR relationships). In the case of the utilization process, in order to record the result of using the data, describe plural kinds of events as a result thereof. (Actually, it becomes OR.)

10. Category indicates the category of the data by ID and name. When there is no item corresponding to the category dictionary, ID is unnecessary.

11. The unit indicates the ID and name of the unit that carries out the process. A unit refers to an edge unit that executes a process, and it is one of a controller (ECU), an application (EAU), and a device (EDU) registered in HCT in advance.

12. Terminal shows the ID and name of the terminal (HCT) to which the unit carrying out the process belongs.

13. Specify necessary requirements and start date and date of completion, as the start requirement and end requirement.

14. For events, events related to the relevant process are indicated, and in the case of a process on the user side in particular, an event for recording the usage record is defined. For the classification, specify process events, state events, etc. described in the event model.

15. In the constraints of related data, data generated / referenced / input / set / changed by the process is shown, and constraints on handling of them are described. For the data to be traded, the classification indicates whether the process is in a position to use the data or a position to provide the position.

16. In the case of data secondary usage, it indicates the units that are permitted to handle data, and sets the disclosure level and access restriction content in text format for each.
Distributed Dictionaries

Concept of distributed dictionary

A dictionary is a definition of the meaning of a word in another word originally, and a definition of a relationship between a set of vocabularies and another set of vocabularies. In this document, a set of data models (DCM) is defined as a dictionary. In other words, the dictionary expresses the meaning of DCM using natural language. However, the same object that actually exists may be represented by a plurality of different DCMs. For example, the terms and usage used at production sites are often different for each company and factory. In such a case, those DCMs having the same meaning are subordinate to a plurality of different dictionaries.

![Diagram of General concept of dictionary](image)

Figure 20: General concept of dictionary

In the case where the same object is a plurality of different expressions by the dictionary, a dictionary conversion map (DTM) is used to convert one expression to the other expression. The dictionary conversion map can take different actual dictionaries and define them, but in this specification, after defining a specific dictionary in a neutral form, all the actual dictionaries are separated from the specific dictionary Make it the conversion at
The specific data dictionary (SDD) and the actual data dictionary (ADD) defined as the data dictionary have the same format. The data dictionary has DCM as an element. Therefore, for convenience, the specific data dictionary and the actual data dictionary can coexist in one data table and can be managed by uniquely identifying it with an identification code or the like.

The service dictionary has information on processes providing or utilizing data, and information on events that execute those processes. A service dictionary defined as a specific dictionary is treated as a reference model, and a process model (PCM) and an event model (ECM) corresponding to actual services existing on individual sites are registered in the actual dictionary.

Each of the specific data dictionary and the actual data dictionary has a unique ID. Also, the data dictionary has the revision number and the ID of the previous version. The specific service dictionary also has a unique ID and there can be multiple existences. The specific service dictionary also has the revision number and the ID of the previous version.

Categories are defined for data model (DCM), process model (PCM) and event model (ECM), respectively. These categories are registered in advance in the category dictionary, and they are selected from the category dictionary for use when defining each model. The category dictionary is only a specific dictionary, and no actual dictionary exists.

The categories of the data model (DCM), the process model (PCM), and the event model (ECM) are category dictionaries (CDD) uniquely designated by each data dictionary (SDD or ADD) or service dictionary (SSD or ASD) Has been registered.
Each item (DPD) of DCM in the data dictionary has a default value setting.

Specific Data Dictionary (SDD)

Definition information of all DCM mutually agreed between multiple sites. It contains one or more DCMs. A plurality of specific data dictionaries may exist.

Actual Data Dictionary (ADD)

It has a list of all the DCMs to be used for each site or terminal (HCT) or the controller (ECU) under the terminal.

Specific Category Dictionary (SCD)

Data category (DCC), process category (PCC), event category (ECC) summarized. The same category may be defined as different DCC, PCC, ECC depending on the dictionary difference.

Translation of DCM between dictionaries

Sets the difference between the specific dictionary and the actual dictionary. In the case of common categories, it corresponds to the definition of the difference from the previous version in the dictionary revision. With the information of the dictionary conversion, associate the definition before conversion (for example, src DCM) with the definition after conversion (dst DCM).
Dictionary Translation Map (DTM)

Actual data dictionary, specific data dictionary, etc., when there are definitions of two or more different DCMs for the same subject, they show their relationship. And associates one or more concatenated data items of the DCM to be converted to one DCM of the conversion destination.

Property Translation Map (PTM)

Indicates the correspondence between DCM’s items (DPD) in dictionary conversion.

Mapping mechanism

Normally, mapping is done on the desk in the transaction contract phase, or interactively by the cooperation manager (HCM). The basic concept of mapping is shown below. Here, the dictionary conversion map is defined based on the post-conversion (dst DCM). The dictionary ID of the conversion destination and the dictionary ID of the conversion source are confirmed in advance.

In the case of FIG. 24, both DCMs to be mapped are one to one. In this case, as a result of the mapping, an item conversion map (PTM) is defined, and the data item (DPD)
Basic requirements of connected industries open framework for manufacturing

possessed by both DCMs is set therein. On the other hand, when there are a plurality of corresponding DCMs, as shown in FIG. 25, DCM (srcDCM 2 in the drawing) to be linked with the primary DCM (srcDCM 1 in the figure) is brought out and the data item (DPD). In this case, it is also necessary to record the DCM connection information.

Figure 24: mapping for one by one of DCM

Figure 25: Mapping for one to many DCMs
Example of translation dictionary

Hereinafter, a specific example for interactively executing the dictionary conversion map in the PULL type use case will be described. First, as step 1, mapping is performed between the actual data dictionary possessed by the data using side and the specific data dictionary.

![Diagram showing data mapping process]

Figure 26: Pull type contract (Step 1)
In this example, since the primary DCM on the specific data dictionary side was the inspection instruction and the data items that it had were not sufficient for the DCM called the initial equipment inspection instruction, the DCM that is the connected DCM and the inspection procedure And brought the items into correspondence. As a result of these mappings, a dictionary conversion map (DTM) and an item conversion map (PTM) were obtained as shown in FIG.
Subsequently, in order to ascertain whether the requested contents expressed as a specific data dictionary can be provided by the data providing side, the request is made in step 3, and as a result, from the providing side to the step 4 by the DCM. It has been shown to be possible. However, it can be seen that the contents of the original request are not all satisfied with only this DCM item.

Step 5 - 1 shows a case where the agreement is made on the contents, but if that is not enough, as shown in step 5 - 2, the data providing side further applies the concatenated DCM and converts the data items Is increasing. Ultimately, in step 6, the data providing side has completed the conversion map of the data providing side, including the data item possessed by the inspection daily report which is the connected DCM.

Figure 28: Translation map for Pull type contract (user side)
Basic requirements of connected industries open framework for manufacturing

Figure 29: Pull type contract at provider side (Step 3)

<table>
<thead>
<tr>
<th>Site A (Provider side)</th>
<th>Specific dictionary (Broker)</th>
<th>Site A (User side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspect order</td>
<td>Eqmt ispct odr</td>
<td></td>
</tr>
<tr>
<td>inspect-id</td>
<td>Order-id</td>
<td></td>
</tr>
<tr>
<td>equipment-id:eq-type</td>
<td>Eqmt type</td>
<td></td>
</tr>
<tr>
<td>equipment-id</td>
<td>Eqmt-id</td>
<td></td>
</tr>
<tr>
<td>equipment-id:name</td>
<td>Eqmt name</td>
<td></td>
</tr>
<tr>
<td>equipment-id:eng draft-id</td>
<td>Draft no</td>
<td></td>
</tr>
<tr>
<td>proc-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>proc-id:part name</td>
<td></td>
<td></td>
</tr>
<tr>
<td>proc-id:method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>proc-id:tool-id</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chk item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>judge type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checker type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>plandate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checkdate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>check date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checker name</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This is a new request for you!

Figure 30: Pull type contract at provider side (Step 4)

<table>
<thead>
<tr>
<th>Site A (Provider side)</th>
<th>Specific dictionary (Broker)</th>
<th>Site A (User side)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td>Inspect order</td>
<td>Eqmt ispct odr</td>
</tr>
<tr>
<td>rec-id</td>
<td></td>
<td>Order-id</td>
</tr>
<tr>
<td>eqmt-id</td>
<td></td>
<td>Eqmt type</td>
</tr>
<tr>
<td>name</td>
<td></td>
<td>Eqmt-id</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eqmt name</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Draft no</td>
</tr>
<tr>
<td>check item</td>
<td></td>
<td></td>
</tr>
<tr>
<td>result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>labor-id</td>
<td>check date</td>
<td></td>
</tr>
<tr>
<td></td>
<td>checker name</td>
<td></td>
</tr>
</tbody>
</table>

How about this available

<table>
<thead>
<tr>
<th>check item</th>
<th>result</th>
<th>judge type</th>
<th>checker id</th>
<th>plandate</th>
<th>checkdate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Industrial Value Chain Initiative, 2019
Basic requirements of connected industries open framework for manufacturing

Figure 31: Pull type contract at user side (Step 5-1)

Figure 32: Pull type contract at user side (Step 5-2)
Basic requirements of connected industries open framework for manufacturing

Site A (Provider side)
- Maintenance
 - rec-id
 - eqmt-id
 - name
 - check item
 - result
 - pass
 - labor-id
 - check date
 - checker name

Check Report
- eqipment-id
- op type
- place
- tool-id
- labor
- date

Specific dictionary (Broker)
- Inspect order
 - inspect-id
 - equipment-id:eq-type
 - equipment-id
 - equipment-id:name
 - equipment-id:eng draft-id
 - proc-id
 - proc-id:part name
 - proc-id:method
 - proc-id:tool-id
 - chk item
 - result
 - judge type
 - checker-id
 - plandate
 - checkdate

Site A (User side)
- Eqmt ispct odr
 - Order-id
 - Eqmt type
 - Eqmt-id
 - Eqmt name
 - Draft no
 - ispct part
 - method
 - tool no
 - ispct item
 - ispct result
 - unit of result
 - result type
 - personnel-id
 - planed date
 - actual date

Figure 33: Pull type contract at provider side (Step 6)

Figure 34: Pull type contract at user side (Step 7)
Preconditions for mapping processing in dictionary conversion are summarized below:

1. The DCM can be qualified with the category (PCC) of the service (PCM) that uses it. Even in the same DCM, when a service qualifier is attached, it can be treated as a separate item, and items can be added, deleted, default values can be changed, and so on.

2. Conditions (a where clause in a SQL statement) cannot be attached to a DCM that a user can request. For example, when requesting the operation history, it is not possible to designate time designation or condition designation each time. However, excluding the case where the negotiation is made independently with the provider depending on the value set for the parameter set at the time of request.

3. If there is a required item at the time of mapping and the item cannot be provided, set a default value. If it is impossible with the default value, the transaction is not established.

4. After the mapping is decided, the actual data record is reconfigured each time according to the conversion table. Since reconfiguration is performed on the HCT, in the case of concatenated DCM, there are multiple DCMs to be transmitted per transaction. In this case, the number of records of the concatenated DCM can be grouped for each primary key for the number of records of the underlying DCM.

5. In the case of PULL type, the data requester can make the specific data dictionary the same as the actual data dictionary. In the case of the PUSH type, the data providing side can make the specific data dictionary the same as the actual data dictionary. In this case, conversion of the dictionary becomes one time.

Data preparation inside the edge

Likewise, the coordination terminal (HCT) and the coordination unit (ECU) within the edge need to decompose and reconstruct data corresponding to the concatenated structure for the component or data model (DCM) under its control is there. If one request is composed of multiple DCMs, inquiries are made for each and the data (DCR) is integrated.

FIG. 35 shows the inquiry from the data providing side HCT to the ECU. Further, FIG. 36 is a schematic diagram in the case where they are distributed and arranged in a plurality of units. The integrated DCM can be branched on a concatenated DCM basis.
Figure 35: Data providing by ECU

Figure 36: multiple query to EDUs
System use case

System Integration Phase

In the integration phase, make the following registration

<table>
<thead>
<tr>
<th>Registered content</th>
<th>Management server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade Account Party (TAP)</td>
<td>HCS</td>
</tr>
<tr>
<td>Hyper Connection Terminal (HCT)</td>
<td>HCS</td>
</tr>
<tr>
<td>Edge Unit (ECU, EAU, EDU)</td>
<td>HCT</td>
</tr>
<tr>
<td>Data Component Model (DCM)</td>
<td>HDS</td>
</tr>
<tr>
<td>Process Component Model (PCM)</td>
<td>HDS</td>
</tr>
<tr>
<td>Event Component Model (ECM)</td>
<td>HDS</td>
</tr>
</tbody>
</table>

Restrictions include the following.
1. ECU and EAU must register themselves with HCT and receive certification

2. The ECU and the EAU have to register the services to use data themselves as PCI in the HCT.

3. The ECU has to register the lower EDU to be managed in the HCT.

4. The ECU must register the service that the EDU uses data to the HCT as PCI (process implementation).

5. The ECU and the EAU must select or register one ADD to be used with the HCT.

6. ECU and EAU must select or register DCM to be used with HCT to HDS.

7. The ECU and the EAU shall correct if there is a shortage of items in the DCM used with the HCT.

Trade Contract Phase

In the transaction contract phase, we make the following registration

Table 12 Data registration on servers (2)

<table>
<thead>
<tr>
<th>Registered content</th>
<th>Management server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional Actual Data Dictionary (ADD)</td>
<td>HDS</td>
</tr>
<tr>
<td>Additional Specific Data Dictionary (SDD)</td>
<td>HDS</td>
</tr>
<tr>
<td>Dictionary Translation Map (DTM)</td>
<td>HDS</td>
</tr>
<tr>
<td>Trade Data Profile (TDP)</td>
<td>HCT</td>
</tr>
<tr>
<td>Trade Service Profile (TSP)</td>
<td>HCT</td>
</tr>
</tbody>
</table>

In addition, regarding individual transactions, there are the following contents

<table>
<thead>
<tr>
<th>Registered content</th>
<th>Management server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trade contract request</td>
<td>HCT</td>
</tr>
<tr>
<td>Confirm trade contract request</td>
<td>HCT</td>
</tr>
<tr>
<td>Sample data for mapping</td>
<td>HCT</td>
</tr>
</tbody>
</table>
The outline of the transmission of sample data is shown in the following figure.

Figure 38 Send sample data

Trade Contract Setup Phase (PUSH type)

The transaction contract phase (PUSH type) has the following flow.

1. Identify available data on the provider side
2. Identify DCM that can provide data with EDU and ECU.
3. Convert DCM to specific data dictionary (SDD) and register it. Also register sample data.
4. Specify a process model (PCC) that can be provided and conditions.
5. Setting up and sending requests
6. Search available services and convert DCM to actual data dictionary (ADD)
7. Acquire sample data, create transformation map
8. Set usage conditions and obtain consent from the provider
9. Send test before start

10. Register in the subscriber's subscriber list

11. Send test to subscribers only for new registrants

12. Test whether tracing after execution is possible, start trading

Figure 39 Push type contract (Step 1)
Basic requirements of connected industries open framework for manufacturing

Figure 40 Push type contract (Step 2)

Figure 41 Push type contract (Step 3)
Trade Contract Setup Phase (PULL type)

Flow of transaction contract phase (PULL type)

1. Ask a company A
2. Add TSP (Target Service Profile) upon request
3. In case of OK, check the possible list of items.
4. If necessary item is NG, negotiate. End with NG
5. Detailed deal conditions setting
6. Setting Request Parameters (Corresponding to where Clause of Query)
7. Frequency of execution, method, handling of data
8. Determination of charging method and contract contents
9. Send test
10. Data transmission test between HCT (/ ECU)
11. Test as a business scene (billing etc.)
12. Test whether tracing after execution is possible
Basic requirements of connected industries open framework for manufacturing

Figure 42: PULL type contract (Step 1)

Figure 43: PULL type contract (Step 2)
Basic requirements of connected industries open framework for manufacturing

Figure 44: PULL type contract (Step 3)

Figure 45: PULL type contract (Step 4)
System execution and control phase

FIG. 46 shows a flow of cooperation among subsystems with respect to a PULL type use case in the transaction execution phase. HCT (Cooperative Terminal) inquires HDS (Dictionary Server) for dictionary and dictionary conversion map. It is the HCT that actually converts.

Since HCT is located on the edge side and is located inside the firewall, it always serves as a starting point for communication to the Internet side. Therefore, for example, a delay due to asynchronism occurs between the HCS on the receiving side of the request information and the HCT.

![Diagram showing data translation at execution and control phase (PULL use case)](image)

Figure 46: Data translation at execution and control phase (PULL use case)

Set Record data for linked DCMs

When the cooperating terminal (HCT) on the data providing side combines multiple DCMs at the time of data transmission to make the configuration of the requested DCM, for each DCM other than the primary DCM, for each record of the primary DCM it is necessary to make inquiries.
Basic requirements of connected industries open framework for manufacturing

Figure 1 link to multiple DCMs
Basic requirements of connected industries open framework for manufacturing

Figure 47: process for the Request of HCT

Figure 48: Query of the primary DCM (Step 4-5)
Some ECUs cannot perform queries of concatenated DCM (queries specifying a list of primary keys). In that case, it corresponds only to the query of the main DCM, and preliminarily asserts that it is impossible to correspond to the query of the concatenated DCM.

Procedure of Profile usage
1. The data provider confirms the ID of the corresponding contract agreement profile when sending and receiving on receiving.
2. Retrieve the ID of the transaction data profile from the transaction contract profile ID. (Refer to HCT)
3. Acquire contents from actual data dictionary (ADD), specific data dictionary (SDD),
and the ID of DCM before or after conversion belonging to each side.

4. Acquire the dictionary conversion map (DTM) based on the transaction data profile ID and acquire the item conversion map (PTM) belonging to the lower order.

Monitoring and Evaluation phase

Restriction items (transaction confirmation phase)

1. The ECU and the EAU shall report the service that the lower EDU himself or herself has managed as a PCE.

2. The ECU and the EAU shall report the statistical data of the event occurring on the user or the lower EDU to be managed.

3. The credit possessed by the business entity (TAP: Trade Account Party) having a trading account must correspond to PCE and ECR, or PCI, which are charged according to the transaction profile.

4. The historical data held by HCT must be block chained and stored in HCS in a dispersed manner to ensure that it has not been tampered

5. In the case that tampering is approved or the consistency can not be confirmed, immediately invalidate the new transaction contract and transaction execution and notify the parties implementing the transaction.

For history management, refer to the following contents

```
Service history
- transaction-id
- component-id
- event-id
- start-time
- end-time
- exec-value

Event history
- event-class-id
- event-class
- component-id
- description
- timestamp
```

Figure 50 history data management