HANNOVER MESSE 2019, 1-5 April

Connected Industries Open Framework for Industrial Value Chain Transformation

1st April 2019 Prof. Dr. Yasuyuki Nishioka Industrial Value Chain Initiative Hosei Unversity

IV Industrial Value Chain Initiative

1. Overview of Industrial Value Chain Initiative

- 2. Smart Manufacturing Scenarios in 2018
- 3. What is Connected Industries Open Framework?
- 4. Result of Use Cases Development in the Project
- 5. Road Map of Digital Transformation of Manufacturing

Loosely defined standard for connected manufacturing

Smart Manufacturing Reference Architecture

4

Members of IVI

250+ companies, 600+ individuals

Regular Members of IVI

SONIX

250+ companies 600+ individuals

K

Shinkawa

ESCO

KU

ard

Н МІТЅИВІЅНІ НІТАСНІ

TOSHIBA MA

FUJI Xerox 🌒

MOTION & CONTROL®

Nitto

Ahresty

A ME

F- Fuji

AGC

Sodick

J.A.M.

sinto

- 1. Overview of Industrial Value Chain Initiative
- 2. Smart Manufacturing Scenarios in 2018
- 3. What is Connected Industries Open Framework?
- 4. Result of Use Cases Development in the Project
- 5. Road Map of Digital Transformation of Manufacturing

Smart Manufacturing Scenarios in 2018

NoTitle	Facilitator
1 Key performance Index for connectable factory floors and management	Yamazaki Mazak Corporation
2 Secure and large-scale data distribution services	Toshiba Corporation
3 Visualization of decision making based on risks and losses in applying condition-based maintenance	Daikin Industries, Ltd.
4 Improving quality, productivity and automation of production lines with Artificial Intelligence	Mazda Motor Corporation
5 Predictive maintenance and quality control anyone can use by using sensor data	Misuzu Industries Corporation
6 Developing of quality according operator uniqueness utilizing BOP	Brother Industries, Itd.
7 Simplification and efficiency improvement in the operation phase of robot equipment	Yaskawa Electric Corporation
8 Visualization of achievements of people / goods / behavior analysis and optimization	Mazda Motor Corporation
9 Evolution to high-efficiency manufacturing by autonomization	Nikon Corporation
10 Visualization of kaizen status at remote manufacturing sites	Ricoh Co., Ltd.
11 Visualization and optimization of energy consumption and productivity of manufacturing facilities	Panasonic Industrial Devices SUNX Co., Ltd.
12 Optimization by tracking the actual time and location of parts transportation trucks	Mazda Motor Corporation
13 Progress announcement service for small and medium enterprises	Fujitsu Limited
14 Real-time data collection and utilization between factory processes by extended MES	Kojima Industries Corporation
15 Construction of small parts management system using digital tag	DMW Corporation
16 Quality control for each worker - Secure real-time management of quality KPI -	IHI Corporation
17 Stabilization of product quality by using AI on edge of production	Mitsubishi Electric Corporation
18 Improvement of quality in forging production line	Mitsubishi Electric Corporation
19 Constructive and continuous data collection and analysis	CKD Corporation

2015:20 scenarios

2016 : 25 scenarios

Selected Outputs of 2018 scenario WGs

シーン③:ロボットプログラム自動生成

Developing of quality according operator uniqueness utilizing BOP (4A01)

Quality control for each worker - Secure real-time management of quality KPI (4A04)

Simplification and efficiency

improvement in the operation

(1):人の動作を自動分析

Evolution to high-efficiency manufacturing by autonomization (4C04)

Improvement of quality in forging production line (4A03)

Visualization of achievements of people / goods / behavior analysis and optimization (4C03)

Predictive maintenance and quality control anyone can use by using sensor data (4B01)

ര-ാ-ോ-റ

(C) 2019. Industrial Value Chain Initiative 9

Selected Outputs of 2018 scenario WGs

factory processes by extended MES (4E02)

location of parts transportation trucks (4E01)

16 Digital tools for Smart Thinking Organization

- 1. Overview of Industrial Value Chain Initiative
- 2. Smart Manufacturing Scenarios in 2018
- 3. What is Connected Industries Open Framework?
- 4. Result of Use Cases Development in the Project
- 5. Road Map of Digital Transformation of Manufacturing

Simple and Easy to implement a connected world

Double stages translation by adaptable dictionaries

Trade profiles for data distribution and delivery

System Architecture

- 1. Overview of Industrial Value Chain Initiative
- 2. Smart Manufacturing Scenarios in 2018
- 3. What is Connected Industries Open Framework?
- 4. Result of Use Cases Development in the Project
- 5. Road Map of Digital Transformation of Manufacturing

Use case categories of platform data distribution

✓ Open and/or closed business model implementation regarding data as intellectual properties

- CNC data of machine tools are securely managed in a remote site and by decentralizing the remote site.
- Machine tool TOSH **DMG MOR**

Enhance of quality assurance by sharing the result of testing data among supply chain

- Monitoring results of a inspection process and inquiring a image data of a particular NG lot.
- Accounting integration with manufacturing operations by confirming the performance data

Scenario 3

Lot inspection at supplier SME directly by the customer and generating account payable

.. data as intellectual properties

Open and/or closed business model implementation regarding data as intellectual properties

CNC data of machine tools are securely managed in a remote site by decentralizing its data control.

The CNC program that interactively modified by the field operator according to individual order items or prototypes, is disassembled into additional conditions and parameters, and is shared among the company. Actual orders are managed between sites considering cost, quality, and delivery time by associating them with the job characteristics.

1) Push production orders and NC program by maker (A << B)

) Fabricator makes parts after updating the NC program

Scenario 1

3) Push production result and NC program by fabricator (A >> B)

Enhance of quality assurance ...

✓ Enhance of quality assurance by sharing the result of testing data among supply chain

Monitoring results of a inspection process, and inquiring a image data of a particular problematic lot.

The results of workpiece loading, unloading and quality inspection (image inspection) after processing are linked with external data. Then the system externally acquires data necessary for quality control inside the edge. When an incident occurs, managers identify the cause and improve it from the data inside and outside the edge.

1) Push production order by maker (A << B)

Scenario 2

- 2) Push production result by fabricator (A >> B)
- 3) Push shipping result by fabricator (A >> B)
- 4) Pull quality data (pictures) by maker (A >> B)

Sales order panel of supplier

Production line of supplier

Purchas order panel of customer (maker)

6 + 0 @ mahod.mm	*			2 (B) 1414													4
顧客HCT 送受信号	F-9	10,913-10 16-27 W		81	-11												
		7-8				4-9	0.000	18.84	н.	81	9/16/2	- 104					
4-0		2110002-004		- 5		Personal and	2010/01/1	12310	+ 10.00		- 2018/1	100	100	36	1.401	0	
1000		-										-	- 1				
THE		- 14															
B012-00	distanti i	1019-21-															
107846		2124-25													10		
6.079 Ballet		00000000	1007			17-10											
RECH		10.4/0.07	93			MIL			秋音				出种				
				Sofering Sofering		31.7an	4-7 Nagoria		otifet Manuficka			110		100		2007	
			1187	m21+33w	188	4425-6230	1000 ALT 124	-	AL22+121#		A21-5104		11-1214	1000 10	0-c24 m	104 AL	in:
			296	*1	146	*1	244.02	195	811	285	**	1988 8		285. 10			
						2010/017		Lors	-			2075.			water w		
								2.85				246 -		425 P		- 100 - 111	-
			2.5	manufa	1.14	2110/02/08		10.000	Preknuter .			184 1	81			146 m	-
					8125	87.			Distance?			and a				UTH 000	
								-	10.01			#F2 1					
								1144				2/18					
									20000000			*251	100.000				
								014	\$118			-	TO ALL ALL				
												11.84					
												-	101111				
												-	100				
			11.00														

- Real time reporting of production line status
- Quality data distribution by push/pull procedures

Accounting integration ..

✓ Accounting integration with manufacturing operations by confirming the performance data

Lot inspection at supplier SME directly by the customer and generating an account payable

Order is automatically accepted when supply parts from the manufacturer arrive at the supplier side. IoT gateway at the point of passage of materials in the factory monitors and logs there, and necessary inspection data is checked at each station. In the maker side, account payable is generated when the parts complete and ready to ship. The maker or 3PL goes and pick up them.

- 1) Push purchase order by maker (A << B)
- 2) Push production progress by supplier (A >> B)
- 3) Pull direct acceptance by maker (A >> B)

Trade contract setup phase

- 1. Overview of Industrial Value Chain Initiative
- 2. Smart Manufacturing Scenarios in 2018
- 3. What is Connected Industries Open Framework?
- 4. Result of Use Cases Development in the Project

5. Road Map of Digital Transformation of Manufacturing

Goals of Activities

Implement all the functions of the minimum executable model, and start services by stable operation and support.

operation so that users can choose and

implement with a little integration cost

Solution partners start their service

FY2020

For scaling up and security improvement, implementation architecture and infrastructure are redesigned and rebuilt

FY2022

Develop a strong authentication system both on hardware and software, so that proof of delivery is available

Expand the system in open-basis, and contribute to developing international rules and standard of the data economy

Technical Achievement

Collect words and relations of dictionaries for preliminary study on developing a selforganizing common dictionary

Design an additional function of dictionaries that recommends the correct words and mapping for the local users

Apply the technology of AI-based automatic translation between the local and common dictionaries

Optimize the rules and processes of translation and delivery on data trade using context depending historical data.

Data trade is monitored by AI and it detects unauthorized use, as well as ranking and rating of the parties

Why don't you join us?

Danke schön.

https://www.iv-i.org/en/